数Ⅲ

数Ⅲの動画授業ページ、無料プリント(PDF)のメニュー。
 高校数Ⅲ 学習計画表 ?
NO. イメージ 授業の内容 pdf
1 ◯◯ 複素数平面・共役な複素数
複素数 Z=a+biに対して(1)a-biをZと共役な複素数という。
2 複素数平面・共役な複素数② 複素数平面・共役な複素数②
共役な複素数について次のことが成り立つ
3 複素数の絶対値・2点間の距離① 複素数の絶対値・2点間の距離①
複素数Z=a+biに対して、√a2+b2をZの絶対値といい、|Z|で表し、 これは原点Oと点Zとの距離である。
4 複素数の絶対値・2点間の距離② 複素数の絶対値・2点間の距離②
例題)α=3+(2x−1)i、β=x+2−iとする。2点A(α)、B(β) と原点Oが一直線上にあるとき、実数xの値を求めよ。
5 複素数の極形式① 複素数の極形式①
複素数zの極形式、複素数zの②偏角
6 複素数の極形式② 複素数の極形式②
例題)次の複素数の極形式で表そう。ただし、偏角θは0≦θ<2πとする。
7 複素数の積と商① 複素数の積と商①
0でない2つの複素数
8 複素数の積と商② 複素数の積と商②
例題)αβ、α/βをそれぞれ極形式で表そう。
9 複素数の図表示① 複素数の図表示①
点(√3+3i)zは、点zを原点0を中心にπ/3だけ回転し、原点からの距離を...


数Ⅲ NO.10〜

NO. イメージ 授業の内容 pdf
10 複素数の積の図表示② 複素数の積の図表示②
例題)複素数zに対して、点zを原点0を中心として5/6πだけ回転した点を表す複素数w1を求めよう。
11 複素数の積の図表示③ 複素数の積の図表示③
例題)z1=√3+i、z2=2+2iのとき、積z1、z2を図示しよう。
12 ド・モアブルの定理① ド・モアブルの定理①
整数nに対して(cosθ+isinθ)n=cosnθ+isinθ 次の値を計算しよう。
13 ド・モアブルの定理② ド・モアブルの定理②
次の値を計算しよう。①(√3-i)4、②(1-i)-4
14 ド・モアブルの定理③ ド・モアブルの定理③
①方程式Z3=−2√2iを解こう。
15 円と分点① 円と分点①
点A(α)、B(β)を結ぶ線分ABをm:nの比に内分する点はnα+mβ/m+n
16 円と分点② 円と分点②
次の等式を満たす点Zはどのような図形をえがくか。①|z-3i|=2 ②|z+5-2i|=4
17 円と分点③ 円と分点③
点Zが単位円の周上を動くとき、次のように表される点Wはどのような図形をえがくか。
18 複素数と三角形① 複素数と三角形①
実数、鈍虚数
19 複素数と三角形② 複素数と三角形②
3点P(2+i)、Q(3+2i)、R(x+3i)について、次の条件を満たすような実数X の値を求めよ。


スポンサーリンク


数Ⅲ NO.20〜

NO. イメージ 授業の内容 pdf
20 三角形の形状① 三角形の形状①
複素数β/αを求めよ。
21 三角形の形状② 三角形の形状②
①異なる3つの複素数Z1、Z2、Z3、の間に等式Z1+iZ2=(1+i)z3が成り立つとき 3点P(Z1)、Q(Z2)、R(Z3)を頂点とする△PQRはどのような三角形か。
22 放物線① 放物線①
焦点、準線、標準形
23 放物線② 放物線②
放物線の焦点と準線を求めよ。放物線の方程式を求めよ。
24 放物線③ 放物線③
点Aを内部に含まない円の中心の軌跡を求めよ。
25 楕円① 楕円①
定点F、F'からの距離の和が一定である点Pの軌跡を楕円といい、点F、F'を焦点という。
26 楕円② 楕円②
次の楕円の頂点と焦点を求めよ。
27 楕円③ 楕円③
次の楕円の方程式を求めよ。
28 楕円④ 楕円④
x軸を基準にしてy軸方向に2/3倍して得られる図形の方程式を求めよ。
29 双曲線① 双曲線①
y軸との交点を双曲線の頂点、右図Iにおける直線AA′を主軸、0を双曲線の中心という。


数Ⅲ NO.30〜

NO. イメージ 授業の内容 pdf
30 双曲線② 双曲線②
次の双曲線の頂点と焦点および漸近線を求めよ。
31 双曲線③ 双曲線③
原点を中心とし、x軸またはy軸を主軸とする双曲線のうち、次の条件を満たすものの方程式を求めよ。
32 2次曲線の平行移動① 2次曲線の平行移動①
次の2次曲線をx軸方向に3、y軸方向に−2だけ平行移動した曲線の方程式と焦点を求めよ。
33 2次曲線の平行移動② 2次曲線の平行移動②
次の2次曲線の焦点を求めよ。①楕円4x2+9y2=24x
34 2次曲線の平行移動③ 2次曲線の平行移動③
①2点(−5、2)、(1、2)からの距離の和が10である点の軌跡を求めよ。

ページ上部へ戻る
だらだラジオ
チャンネル登録はこちら

  はいち@教育YouTuber

copyright 2015 葉一「とある男が授業をしてみた」All Rights Reserved. |広告募集|HP運営 Atelier View 岡山移住ガイド.jp 運営事務局